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1. INTRODUCTION

One of the most important models used in the foundation of quantum mechan-
ics is the projection lattice of a Hilbert space (Birkhoff and von Neumann, 1936)
(see also Varadarajan, 1985; Kalmbach, 1983, 1986; Pták and Pulmannová, 1991,
and others), i.e. the collection L(H ) of all closed subspaces of a Hilbert space
H, endowed with the inclusion relation ⊆ and the orthocomplementation ⊥. The
absence of distributivity in L(H ) gives rise to Heisenberg’s uncertainty principle.
As it was observed by Husimi (1937), L(H ) always satisfies the orthomodular
law:

if A,B ∈ L(H ) and A ⊆ B, then B = A ∨ (B ∧ A⊥).

The key axiom in Dirac’s formulation of quantum mechanics is the superposition
principle, which is connected with the linear structure of the Hilbert space. It ex-
presses the circumstance that a normalized linear combination of two unit vectors
(i.e. superposition of the states corresponding to these vectors) also represents a
pure state. This suggests one to consider general linear spaces that are endowed
with a bilinear form instead of Hilbert spaces only. If we assume that the bilinear
form is strictly positive, then our space is a quadratic space, in particular, if the
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linear structure is assumed to be over the field of real or complex numbers, or the
division ring of quaternions, we get an inner product space (pre-Hilbert space).
Put in another way, a natural question can be put regarding the role of the purely
mathematical property of (topological) completeness of H with respect to the
physical interpretation. A lot of work has been done in this line. Among the most
inspiring contributions, one would mention (Amemiya and Araki, 1966–1967;
Gross and Keller, 1977; Holland, 1969). On the other hand, Keller (1980) found a
surprising example of a nonarchimedean orthomodular quadratic space such that
the corresponding projection logic has similar properties to L(H ). Another very
surprising result is due to Solèr who showed that if an orthomodular quadratic
space admits at least one orthonormal sequence, then this space has to be a Hilbert
space (Solèr, 1995). Apart from algebraic properties, measure-theoretic properties
of pre-Hilbert-space logics are also studied. The first contribution in this line is the
result of Hamhalter and Pták (1987). At the beginning of 1990s some results in
this area were collected by Dvurečenskij in the book (Dvurečenskij, 1992) and the
article (Dvurečenskij, 1993). These results were also presented at the first IQSA
meeting (1992) in Castiglioncello, Italy. Recently, Hamhalter (2003) gathered re-
sults known in the last period. The aim of this survey paper is to summarize the most
recent results on pre-Hilbert-space logics and their corresponding measure spaces.

2. PRE-HILBERT-SPACE LOGICS

Let S be an inner product space. Unless otherwise stated we shall not assume
that S is (metrically) complete. On the other hand, we assume that the linear
structure of S is defined over either the field of real or complex numbers, or the
division ring of quaternions. For any subspace M of S we shall write M for the
completion of M and we shall denote by [x] the one-dimensional subspace of
S generated by the non-zero vector x. We denote by 〈·, ·〉, the inner product on S.
For any subset A of S we denote by A⊥ the orthogonal complement of A, i.e.
A⊥ = {x ∈ S : 〈x, y〉 = 0 for all y ∈ A}. If S is a complete inner product space
(i.e. a Hilbert space), then every closed subset is complete. This means that the
set of closed subspaces coincides with the set of complete subspaces. This is not
the case in general. When we drop the assumption of completeness on S, we get
a spectrum of families of closed subspaces of S. Here we consider five of them.

P (S) = {M ⊆ S : dim M < ∞ or M = A⊥, A ⊂ S, dim A < ∞}
C(S) = {M ⊆ S : M is complete or concomplete}
E(S) = {M ⊆ S : S = M ⊕ M⊥}

Eq(S) = {M ⊆ S : M is closed in S and M ⊕ M⊥ is dense in S}
F (S) = {M ⊆ S : M = M⊥⊥}
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A subspace M of S is cocomplete if there exists a complete subspace A of S
such that M = A⊥. For any inner product space S we have

P (S) ⊆ C(S) ⊆ E(S) ⊆ Eq(S) ⊆ F (S).

The family C(S) was first introduced in Pták and Weber (2001). We say that M
is orthogonally closed if M ∈ F (S). An element of E(S) is a said to be a splitting
subspace of S. The family Eq(S) was recently introduced and studied in Buhagiar
and Chetcuti (in press). A subspace M ∈ Eq(S) is said to be a quasi-splitting
subspace of S.

When endowed with the partial ordering of set-inclusion ⊆ and orthocom-
plementation ⊥, the families defined above carry an algebraic structure with
orthocomplementation. When S is not complete, the algebraic structures of these
families differ considerably. If S is complete, then C(S) = F (S). In contrast, if S
is an infinite-dimensional inner product space with a countable linear dimension,
then

C(S) E(S) Eq(S) F (S).

We further note that when S is a hyperplane in S, then C(S) = E(S) and Eq(S) =
F (S) (refer to Pták and Weber, 2001; Buhagiar and Chetcuti, in press). From
the result of Amemiya and Araki it follows that S is complete if, and only if,
E(S) = F (S).

The family F (S) of orthogonally closed subspaces is a complete lattice, where
for the meet and join we have

∧

i∈I

Mi =
⋂

i∈I

Mi and
∨

i∈I

Mi =
{

span{
⋃

i∈I

Mi}
}⊥⊥

,

respectively. Observe that the family F (S) is the largest family of subspaces that
can be identified with events of a quantum system—the condition M = M⊥⊥ is
the bare minimum. Moreover, Amemiya–Araki theorem asserts that F (S) cannot
enjoy the orthomodular property unless F (S) = E(S) (i.e. S is a Hilbert space).

Let us now turn to the algebraic structure of E(S) and C(S). From the
definition of E(S) it is immediately seen that for any A,B ∈ E(S) such that A ⊆ B,
we have B = A ⊕ (A⊥ ∩ B). Since A⊥ ∩ B ∈ E(S), it follows that E(S) is an
orthomodular poset. The same holds for C(S). However, unless S is a Hilbert space,
neither C(S), nor E(S), can be complete lattices. Gross and Keller (1977) proved
that S is complete if, and only if, E(S) is a complete lattice. This was subsequently
and successively strengthened as follows: S is complete if, and only if, (i) E(S)
is a σ -lattice (Cattaneo and Marino, 1986), (ii) E(S) is a σ -orthomodular poset
(Dvurečenskij, 1988), and (iii) E(S) is atomically weakly σ -complete (Pták and
Weber, 1998). (Since the atoms of E(S) are the one-dimensional subspaces of S, it
follows immediately that S is complete if, and only if, C(S) is atomically weakly
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σ -complete.) In addition, in Dvurečenskij (2001) it was further shown that S is
complete if, and only if, E(S) satisfies the σ -Riesz interpolation property.

A natural question arising in this connection was that of whether E(S) could
be a lattice for S incomplete. This question was answered in Pták and Weber (2001),
by careful analysis of the lattice properties of E(S) and C(S). A hyperplane S of
S was constructed such that E(S) = P (S), and thus E(S)(= C(S)) is a modular
lattice. However, in Gross and Keller (1977) it was shown that for any inner
product space having a countable (infinite) linear dimension, E(S) is not a lattice.
Thus, the lattice properties of E(S) do not seem to have an explicit bearing on the
metric completeness of S.

The family Eq(S) was introduced as an intermediate family between E(S)
and F (S). We recall that E(S) can be very “poor” (sometimes E(S) = P (S), i.e.
E(S) might not contain any Boolean σ -subalgebras), whereas F (S) is always
“rich” (it always has a vast supply of Boolean σ -subalgebras). Whereas the mem-
bers of Eq(S) should behave somewhat similarly to the splitting subspaces, Eq(S)
(at least when S is assumed to be separable) is always furnished with a “good sup-
ply” of Boolean σ -subalgebras. Indeed, by the Gram–Schmidt orthonormalization
procedure we can convert any countable dense subset of S into an orthonormal
basis {xi}. Clearly, the image of the map

� : (I ∈ 2N) 
→
(
S

⋂
span{xi : i ∈ I } ∈ Eq(S)

)

is a Boolean σ -subalgebra of Eq(S). The lattice structure of Eq(S) turns out to be
strongly dependent on the particular choice of the inner product space itself. If S is
a hyperplane in S, then Eq(S) = F (S) and thus Eq(S) is a complete lattice. This is
in contrast to the situation with E(S), where such a rich structure is allowed only
in the case when S is complete. Yet, if S has a countable linear dimension, then
Eq(S) is not a lattice even. Buhagiar and Chetcuti (in press) put as a conjecture
the following.

Conjecture 2.1. Eq(S) = E(S) if, and only if, S is complete.
This was not completely proved. It was done only for the case when

dim S/S < ∞.

Theorem 2.2. Let S be an inner product space such that dim S/S < ∞. Suppose
that Eq(S) = E(S). Then S = S.

Despite from the fact that not every inner product space possesses an or-
thonormal basis, it is still possible (and useful) to define the orthogonal dimension
of an inner product space as the cardinality of any maximal orthonormal system in
S. However, in contrast to Hilbert spaces, this orthogonal dimension reveals very
little information about the properties of the space itself. We recall the well-known
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fact that two Hilbert spaces are isomorphic if, and only if, they have the same or-
thogonal dimension. This is not the case with incomplete inner product spaces, as
the example given by Gudder (1975) exhibits. Unless we assume completeness,
isomorphism between two inner product spaces can only be proved by exhibiting
a bijective unitary transformation between the two spaces.

In Buhagiar and Chetcuti (2004), the following question was analyzed: Sup-
pose that we are given two separable inner product spaces S1 and S2 over R, such
that P (S1) is algebraically equivalent to P (S2) as modular lattices. What can be
said about S1 and S2? Using Gleason theorem, it was proved that, in such case, S1

and S2 are unitarily equivalent, i.e. there exists a bijective unitary transformation
between S1 and S2. This was then extended by Pulmannová (2005). Her proof is
based on results in projective geometries. One can look at this as a generalization
of the classical Wigner’s (1959) theorem.

Theorem 2.3. Let S1 and S2 be two inner product spaces over the same field.
Then the following statements are equivalent:

(i) S1 is isomorphic (or anti-isomorphic) to S2 (as inner product spaces).
(ii) P (S1) is isomorphic to P (S2) (as modular lattices).

(iii) C(S1) is isomorphic to C(S2) (as orthomodular posets).
(iv) E(S1) is isomorphic to E(S2) (as orthomodular posets).
(v) F (S1) is isomorphic to F (S2) (as complete lattices).

3. MEASURES ON PRE-HILBERT-SPACE LOGICS

A charge on any of the respective families defined above is an additive
signed—measure. Formally, if we let L be any of P (S), C(S), E(S), Eq (S) or
F (S), a charge m on L is a map m : L → R, such that

m(A ∧ B) = m(A) + m(B), whenever A,B ∈ L and A⊥B. (3.1)

A charge m is said to be:

(i) completely-additive, if Eq. (3.1) holds for any collection {Ai : i ∈ I } of
pairwise orthogonal subspaces in L such that the supremum

∨
i∈I Ai

exists in L;
(ii) σ -additive, if Eq. (3.1) holds for any sequence {Ai : i ∈ N} of pairwise

orthogonal subspaces in L such that the supremum
∨

i∈N
Ai exists in L;

(iii) bounded, if there exists k > 0 such that |m(A)| ≤ k for each A in L;
(iv) regular, if for every A in L, and every ε > 0, there exists a finite-

dimensional subspace M, contained in A, such that |m(A) − m(M)| ≤ ε;
(v) free, if m(A) is zero for every finite-dimensional subspace A in L.
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A state s on L is a normalized (i.e. s(S) = 1) positive charge. The set of all states
on L, denoted by S(L), is a convex subset of the cube [0, 1]L. When endowed
with the product topology, [0, 1]L is a compact space, and since S(L) is closed in
[0, 1]L, it follows that the state space of any of the respective families described
earlier, is a compact, convex topological space.

By solving the problem that was originally posed by Mackey, Gleason
(Gleason, 1957) did not only succeed in describing all the σ -additive states on
L(H ) (where H is a separable Hilbert space)—he has also revealed the very del-
icate interplay that exists between the measure-theoretic properties of L(H ) and
the geometric structure of H.

Theorem 3.1. (Gleason, 1957) Let H be a separable Hilbert space, dim H ≥ 3.
For any σ -additive state s on L(H ), there exists a unique positive trace operator
T, with unit trace, on H such that

s (M) = Tr T PM, M ∈ L(H ).

Gleason’s theorem for bounded, σ -additive charges was independently
proved by Sherstnev (1974) and Dvurečenskij (1978), and extended for non-
separable Hilbert spaces by Eilers and Horst (1975), and Drisch (1979). It was
later shown, by Dorofeev and Sherstnev (1990) that every completely additive
charge on L(H ) (dim H = ∞) is necessarily bounded. This is a very deep and
surprising result that is not true in the case of finite-dimensional Hilbert spaces.

One of the main (and widely used) consequences of Gleason’s theorem can
be easily exhibited here. It is clear that the σ -additive states on L(H ) are in one-
to-one correspondence with the frame functions on the unit sphere S(H ) of H. (By
a frame function on S(H ) we understand a mapping f : S(H ) → [0, 1] such that
for any orthonormal basis {xi} of H, we have

∑
i f (xi) = 1.) In view of Gleason’s

theorem, for every frame function f on S(H ), there exists a unique positive trace
operator T (with unit trace) on H, such that f (u) = 〈T u, u〉, for all u ∈ S(H ). This
means that

|f (u) − f (v)| = |〈T u, u〉 − 〈T v, v〉|
≤ |〈T u, u〉 − 〈T u, v〉| + |〈T u, v〉 − 〈T v, v〉|
≤ 2‖T ‖ · ‖u − v‖,

which implies that f is uniformly continuous on S(H ). Observe, that as an
immediate consequence of this, we have that L(H ) (dim H ≥ 3) does not ad-
mit any two-valued state. (This is related to the problem of hidden variables.)
We remark that Gleason’s theorem is not true for the case when H is two-
dimensional—it is straightforward to check that L(R2) admits plenty of two-valued
states.
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3.1. Measures on F(S)

The first sound result concerning the state space S(F (S)) is due to Hamhalter
and Pták (1987). They proved that a separable inner product space S is complete
if, and only if, S(F (S)) contains a σ -additive state. Their proof consists mainly
in showing that if F (S) admits a σ -additive state, then the state space S(F (S))
must separate F (S), i.e. whenever A,B ∈ F (S), such that A B, there must
exist a state s satisfying s(A) < s(B). This, on the other hand, forces F (S) to be
orthomodular, which—in view of the Amemiya–Araki theorem—implies that S
must be complete. This result was generalized for non-separable inner product
spaces and completely-additive charges—see Dvurečenskij (1992) for a complete
survey.

A natural problem that erupted immediately after the publication of the
Hamhalter–Pták result was: Is the state space of F (S) necessarily empty for
incomplete inner product spaces (see Pták, 1988; Dvurečenskij, 1992, Problem
4.3.12). The first contribution towards an answer to this question was due to
Dvurečenskij et al. (1990); It was proved that an inner product space S is complete
if, and only if, F (S) admits a regular state. Indeed, it was shown that every regular
state on F (S) is necessarily completely-additive.

The state-on-F (S)-problem (as it was often referred to) remained open for
a considerably longer time. There were partial results that contributed to the
better understanding of the nature of what might be a possible candidate for
a state on F (S), in the case that S is not Hilbert. For instance, it was shown
that F (S) does not admit any two-valued states—see Dvurečenskij (1992). It
was further shown, in Dvurečenskij and Pták (2002), that for any inner product
space, such that dim S ≥ 3, if S(F (S)) �= ∅, then for any state s on F (S), we have
Range(s) = [0,1]. This last result was later generalized in the paper in Chetcuti and
Dvurečenskij (2003). A thorough investigation of the possible ranges of charges
on F (S)(dim S ≥ 3) was given. It was shown that, if the non-zero charge m is
bounded, then for infinite-dimensional inner product spaces, Range (m) is always
convex. A counter-example is also given to show that the same need not be true
if the charge is not bounded. Furthermore, the notion of sign-preserving charges
was introduced.

Definition 3.2. A charge m on F (S) is said to satisfy the sign-preserving prop-
erty (or we say that m is a sign-preserving charge) if for any countable collec-
tion {Ni : i ∈ N} of orthogonal finite-dimensional subspaces in F (S) satisfying
m(Ni) > 0, (resp. m(Ni) < 0) for all i ∈ N, it follows that m(

∨
i∈N

Ni) ≥ 0, (resp.
m(

∨
i∈N

Ni) ≤ 0).

It was shown that the range of charges on F (S)(dim S = ∞) satisfying this
property and the Jauch–Piron property is always convex.
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In Chetcuti and Dvurečenskij (2005), sign-preserving charges on F (S) were
studied in connection with the completeness of the inner product space S. It was
firstly shown that every sign-preserving charge is bounded on P (S) whenever
dim S = ∞. (When dim S < ∞, this need not be true.) Then, the following com-
pleteness criterion was proved.

Theorem 3.3. An inner product space S is complete if, and only if, F (S) admits
a (non-zero) sign-preserving, regular charge.

Another contribution to the state-on-F (S)-problem was given in Chetcuti and
Dvurečenskij (2003). In this paper, it was shown that for any incomplete inner
product space S, the state space S(F (S)) is very poor—it can only contain free
states.

Theorem 3.4. An inner product space S is complete if, and only if, F (S) admits
a state that is not free.

The argument of the proof for this theorem is different from that used by
Hamhalter and Pták in their original paper cited earlier. Here, we used the fact
that for any orthogonally closed subspace A in S, each subspace M of A that is
orthogonally closed relative to A, is necessarily orthogonally closed relative to S,
i.e.

M ⊂ A M⊥A⊥A = M implies M⊥⊥ = M,

where M⊥A = M⊥ ∩ A. In this proof, however, use was made of the fact that a
state is positive, i.e. monotonic. In contrast to the other two criteria (Hamhalter
and Pták, 1987; Dvurečenskij et al., 1990), the proof does not extend directly to
the case of bounded charges. It is still an open problem whether the state space
S(F (S)), for an incomplete S, can admit any bounded charges that are not free.

So, a candidate for what might be a state on F (S), for an incomplete inner
product space S, has to be rather “bizarre,” in the sense that such a measure
must vanish on all the finite-dimensional subspaces of S, and yet, must take all the
values in the unit interval [0, 1]. Indeed, it was supposed that such a measure could
hardly exist, and all efforts were directed towards an answer that, for incomplete
S, excludes completely the possibility of having a state on F (S). The state-on-
F (S)-problem was finally resolved in Chetcuti and Dvurečenskij (2004). A dense
hyperplane S of a separable Hilbert space was exhibited for which S(F (S)) is not
empty. In addition, it was also shown that S(F (S)) is non-empty when S has a
countable linear dimension.

So, although “relatively poor,” the state space S(F (S)) need not be empty for
incomplete inner product spaces.
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S(F (S)) is fully described in the following theorem (see Chetcuti and
Dvurečenskij, 2005) for a large class of incomplete inner product spaces—strongly
dense spaces. An inner product space is said to be strongly dense (in its completion)
if for every infinite-dimensional closed subspace M of S, we have M ∩ S �= ∅.
Each inner product space S satisfying dim S/S < 2ℵ0 is strongly dense. In partic-
ular, each dense hyperplane of a Hilbert space is strongly dense. For such spaces,
F (S) admits plenty of states, and moreover, each state on F (S) is a restriction of
some free state on L(H ) (where H = S).

Theorem 3.5. Let S be an incomplete, strongly dense inner product space. There
is an affine homeomorphism φ : s 
→ sφ between the state space of F (S) and the
face of S(L(H )) (where H = S) consisting of the free states on L(H ). Each state
s on F (S) is the restriction of sφ , i.e. s(M) = sφ(M), for all M ∈ F (S).

In particular, when S is over the complex field, we have the following
corollary.

Corollary 3.6. Let S be an incomplete, strongly dense inner product space over
the complex field. The state space of F (S) is affinely homeomorphic to the state
space of the Calkin algebra associated with the completion S of S.

3.2. Measures on E(S) and C(S)

In contrast to F (S), the orthomodular posets E(S) and C(S) always allow
for a separating system of charges. This is in view of the fact that E(S) (and
C(S)) can always be embedded (as orthomodular posets) in L(S), and thus each
charge on L(S) induces a charge on E(S) (and C(S)). (The embedding is (M ∈
E(S)) 
→ (M ∈ L(S)).) However, in Dvurečenskij and Pulmannová (1989), it was
shown that for an incomplete inner product space S,E(S) does not allow for any
completely additive charge. This implies that the embedding does not preserve
infinite suprema. This is where the notion of regularity “acts as a substitute”
to complete additivity. Caution is required however! Unless we impose some
boundedness condition, the notion of regularity is strictly weaker than that of
complete additivity.

For any Hermitian trace operator T defined on S, the map

m : (M ∈ E(S)) 
→ (Tr (T PM ) ∈ R). (3.2)

defines a bounded regular charge on E(S). In Chetcuti et al. (in press), it was shown
that every bounded regular charge m on E(S) arises in this way. This means that
the set of bounded regular charges on E(S) is in one-to-one correspondence with
the set of completely additive charges on L(S). Moreover, if S is complete, then
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the set of bounded regular charges on E(S) coincides with the set of completely
additive charges.

Not without a little bit of surprise, in Chetcuti and Dvurečenskij (2004), the
following theorem was shown.

Theorem 3.7. The set of completely additive charges on L(S), dim S = ∞, is a
proper subset of the set of regular charges.

A regular charge m having its range contained in Q was exhibited. In view of
the result of Chetcuti and Dvurečenskij (2003), it follows that m is not bounded.
Thus, m is not completely additive, since every completely additive charge on
L(H ) (where H is an infinite-dimensional Hilbert space) is necessarily bounded
(this is the result of Dorofeev and Sherstnev).

3.3. Convergence of Regular Charges

Now we consider convergence problems for charges on E(S). Convergence
theorems for completely additive charges on E(S), in the case when S is a Hilbert
space, were originally studied by Jajte (1972). We say that a sequence {mi : i ∈
N} of bounded regular charges on E(S) is uniformly regular if for any M ∈
E(S) and for any ε > 0 there exists a finite-dimensional subspace M0 of M such
that |mi(M) − mi(M0)| < ε for each mi . The following theorem is Nikodym
convergence theorem in the E(S)-setup, where S is a Hilbert space. This follows
directly from Dvurečenskij (1992, Theorem 3.10.1).

Theorem 3.8. Let S be a Hilbert space and {mi : i ∈ N} be a sequence of regular
bounded charges on L(S) converging pointwise on E(S). Then the limit function is
a bounded and regular charge. (This means that the set of bounded regular charges
on E(S) is weakly sequentially closed.) Moreover, the sequence {mi : i ∈ N} is
uniformly regular.

In Chetcuti et al. (in press) the same problem was investigated for the case
when S is incomplete. It was shown that this case does not allow for such a
clear answer. It was shown that if S is the dense hyperplane (that was originally
constructed by Pták and Weber (2001)) for which E(S) = P (S), then the set of
regular bounded charges on E(S) is not weakly sequentially closed—not even if
we restrict ourselves to states. This provides a negative answer to the problem
posed by Dvurečenskij (see Dvurečenskij, 1992, Problem 4.3.15). The following
theorem was proved in Chetcuti et al. (in press) and it gives a sufficient condition,
under which the limit of a pointwise convergent sequence of bounded regular
charges on E(S) is regular.
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Theorem 3.9. Let {mi : i ∈ N} be a sequence of bounded regular charges on
E(S) converging pointwise on E(S). Suppose that there exists a bounded regular
charge m0 on E(S) such that |mi([x])| ≥ |m0([x])| for each i ∈ N and for every
unit vector x of S. Then the limit function is a bounded regular charge on E(S).
Moreover, the sequence {mi : i ∈ N} is uniformly regular.

4. OPEN PROBLEMS

At the end of this survey article we put a list of natural open problems in this
field. Some of the problems were already mentioned in the text, but we enlist them
here for better reference.

1. Prove or disprove Conjecture 2.1.
2. Does there exist an inner product space S such that F (S) is stateless?
3. Is it possible to extend every free state on E(S) to a state on L(S)? (See

also Dvurečenskij, 1992, Problem 4.3.13, Proposition 4.3.14.) The case
when S is strongly dense seems to be most promising.

4. If dim S/S = n, the mapping s : E(S) → [0, 1] defined by s(A) =
dim A/A

n
,A ∈ E(S) is a (Gleason-type) free state on E(S) such that

Range(s) ⊂ {0, 1/n, 2/n, . . . , 1}. Is it possible to characterize all (dis-
crete) free states on E(S) when dim S/S = n (in a Gleason-type formula)
for S being strongly dense? (Compare with Theorem 3.5 for states on
F (S).)

5. Suppose that a sequence {mi : i ∈ N} of regular bounded charges on E(S)
converges to some charge m. Is m bounded? This is the case when the
inner product space is Hilbert; but how is it in the general case?
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